

Miscellaneous Inactivating Agents

DISINFECTION AND STERILIZATION GUIDELINE PAGE 11 of 45 $\,$ | ALL PAGES \downarrow

Guideline for Disinfection and Sterilization in Healthcare Facilities (2008)

AT A GLANCE

Miscellaneous inactivating agents from the Guideline for Disinfection and Sterilization in Healthcare Facilities (2008).

ON THIS PAGE

Other Germicides

Metals as Microbicides

Ultraviolet Radiation (UV)

Pasteurization

Flushing- and Washer-Disinfectors

Other Germicides

Several compounds have antimicrobial activity but for various reasons have not been incorporated into the armamentarium of health-care disinfectants. These include mercurials, sodium hydroxide, β -propiolactone, chlorhexidine gluconate, cetrimide-chlorhexidine, glycols (triethylene and propylene), and the Tego disinfectants. Two authoritative references examine these agents in detail $^{16,\,412}$.

A peroxygen-containing formulation had marked bactericidal action when used as a 1% weight/volume solution and virucidal activity at $3\%^{49}$, but did not have mycobactericidal activity at concentrations of 2.3% and 4% and exposure times ranging from 30 to 120 minutes 750 . It also required 20 hours to kill *B. atrophaeus*spores 751 . A powder-based peroxygen compound for disinfecting contaminated spill was strongly and rapidly bactericidal 752 .

In preliminary studies, nanoemulsions (composed of detergents and lipids in water) showed activity against vegetative bacteria, enveloped viruses and *Candida*. This product represents a potential agent for use as a topical biocidal agent. ⁷⁵³⁻⁷⁵⁵.

New disinfectants that require further evaluation include glucoprotamin⁷⁵⁶, tertiary amines ⁷⁰³. and a light-activated antimicrobial coating ⁷⁵⁷. Several other disinfection technologies might have potential applications in the healthcare setting ⁷⁵⁸.

Metals as Microbicides

Comprehensive reviews of antisepsis ⁷⁵⁹, disinfection⁴²¹, and anti-infective chemotherapy ⁷⁶⁰ barely mention the antimicrobial activity of heavy metals ^{761, 762}. Nevertheless, the anti-infective activity of some heavy metals has been known since antiquity. Heavy metals such as silver have been used for prophylaxis of conjunctivitis of the newborn, topical therapy for burn wounds, and bonding to indwelling catheters, and the use of heavy metals as antiseptics or disinfectants is again being explored ⁷⁶³. Inactivation of bacteria on stainless steel surfaces by zeolite ceramic coatings containing silver and zinc ions has also been demonstrated ^{764, 765}.

Metals such as silver, iron, and copper could be used for environmental control, disinfection of water, or reusable medical devices or incorporated into medical devices (e.g., intravascular catheters) ^{400, 761-763, 766-770}. A comparative evaluation of six disinfectant formulations for residual antimicrobial activity demonstrated that only the silver disinfectant demonstrated significant residual activity against *S. aureus* and *P. aeruginosa* ⁷⁶³. Preliminary data suggest metals are effective against a wide variety of microorganisms.

Clinical uses of other heavy metals include copper-8-quinolinolate as a fungicide against *Aspergillus*, copper disinfection ⁷⁷¹⁻⁷⁷⁴, organic mercurials as an antiseptic (e.g., mercurochrome) and preservative/disinfectant (e removed from vaccines]) in pharmaceuticals and cosmetics ⁷⁶².

Ultraviolet Radiation (UV)

The wavelength of UV radiation ranges from 328 nm to 210 nm (3280 A to 2100 A). Its maximum bactericidal effect occurs at 240–280 nm. Mercury vapor lamps emit more than 90% of their radiation at 253.7 nm, which is near the maximum microbicidal activity ⁷⁷⁵. Inactivation of microorganisms results from destruction of nucleic acid through induction of thymine dimers. UV radiation has been employed in the disinfection of drinking water ⁷⁷⁶, air ⁷⁷⁵, titanium implants ⁷⁷⁷, and contact lenses ⁷⁷⁸. Bacteria and viruses are more easily killed by UV light than are bacterial spores ⁷⁷⁵. UV radiation has several potential applications, but unfortunately its germicidal effectiveness and use is influenced by organic matter; wavelength; type of suspension; temperature; type of microorganism; and UV intensity, which is affected by distance and dirty tubes ⁷⁷⁹. The application of UV radiation in the health-care environment (i.e., operating rooms, isolation rooms, and biologic safety cabinets) is limited to destruction of airborne organisms or inactivation of microorganisms on surfaces. The effect of UV radiation on postoperative wound infections was investigated in a double-blind, randomized study in five university medical centers. After following 14,854 patients over a 2-year period, the investigators reported the overall wound infection rate was unaffected by UV radiation, although postoperative infection in the "refined clean" surgical procedures decreased significantly (3.8%–2.9%) ⁷⁸⁰. No data support the use of UV lamps in isolation rooms, and this practice has caused at least one epidemic of UV-induced skin erythema and keratoconjunctivitis in hospital patients and visitors ⁷⁸¹.

Pasteurization

Pasteurization is not a sterilization process; its purpose is to destroy all pathogenic microorganisms. However, pasteurization does not destroy bacterial spores. The time-temperature relation for hot-water pasteurization is generally \sim 70°C (158°F) for 30 minutes. The water temperature and time should be monitored as part of a quality-assurance program ⁷⁸². Pasteurization of respiratory therapy ^{783, 784} and anesthesia equipment ⁷⁸⁵ is a recognized alternative to chemical disinfection. The efficacy of this process has been tested using an inoculum that the authors believed might simulate contamination by an infected patient. Use of a large inoculum (10⁷) of *P. aeruginosa* or *Acinetobacter calcoaceticus* in sets of respiratory tubing before processing demonstrated that machine-assisted chemical processing was more efficient than machine-assisted pasteurization with a disinfection failure rate of 6% and 83%, respectively ⁷⁸³. Other investigators found hot water disinfection to be effective (inactivation factor >5 log₁₀) against multiple bacteria, including multidrug-resistant bacteria, for disinfecting reusable anesthesia or respiratory therapy equipment ⁷⁸⁴⁻⁷⁸⁶.

Flushing- and Washer-Disinfectors

Flushing- and washer-disinfectors are automated and closed equipment that clean and disinfect objects from bedpans and washbowls to surgical instruments and anesthesia tubes. Items such as bedpans and urinals can be cleaned and disinfected in flushing-disinfectors. They have a short cycle of a few minutes. They clean by flushing with warm water, possibly with a detergent, and then disinfect by flushing the items with hot water or with steam. Because this machine empties, cleans, and disinfects, manual cleaning is eliminated, fewer disposable items are needed, and fewer chemical germicides are used. A microbiologic evaluation of one washer/disinfector demonstrated complete inactivation of suspensions of *E. faecalis* or poliovirus ⁷⁸⁷. Other studies have shown that strains of *Enterococcus faecium* can survive the British Standard for heat disinfection of bedpans (80°C for 1 minute). The significance of this finding with reference to the potential for enterococci to survive and disseminate in the health-care environment is debatable ⁷⁸⁸⁻⁷⁹⁰. These machines are available and used in many European countries.

Surgical instruments and anesthesia equipment are more difficult to clean. They are run in washer-disinfectors on a longer cycle of approximately 20-30 minutes with a detergent. These machines also disinfect by hot water at approximately 90° C 791 .

READ NEXT
Regulatory Framework

ERROR

Your account has been disabled. Please contact the super admin (faddy@clearpol.com).

NOVEMBER 28, 2023

⊕ SOURCES SHARE

CONTENT SOURCE:

National Center for Emerging and Zoonotic Infectious Diseases (NCEZID)

Was this page helpful?

Yes

Partly

No

RELATED PAGES

Disinfection and Sterilization Guideline

Disinfection

Chemical Disinfectants

Regulatory Framework

Neutralization of Germicides